DAWN VIR CALIBRATION DOCUMENT

Release 0.0 (January 2011)

Written by: G. FILACCHIONE (INAF-IASF, Rome), E. AMMANNITO (INAF-IFSI, Rome) Approved: A. CORADINI (INAF-IFSI, Rome)

1. INTRODUCTION

This document describes the algorithms used to calibrate VIR raw (EDR) data in physical units (RDR, spectral radiance), in order to give to the final user a detailed view of the method used to remove instrumental effects on the data.

A complete calibration campaign of VIR was performed at channel level in Selex Galileo (SG), Florence, immediately after integration and before delivery to Orbital for assemblage on the Dawn spacecraft.

In the SG calibration facilities were performed spectral, geometrical, flat-field and radiometric measurements. thanks to different measurements setups. A description of the methods used and results of these tests is described in De Sanctis et al. (2010). Furthermore in this phase were characterized the focal planes performances (including defective pixels, linearity and dark current at various operative temperatures), the instrumental thermomechanical stability, the data-commanding-telemetry handling and electrical interfaces.

In section 2 is described the experimental setup used for pre-lauch calibrations at SG; section 2 is devoted to the description of the spectral calibration; geometrical calibration is included in section 4; flat-field is described in section 5; section 6 contains a description of radiometric calibration; section 7 is about the intarnal calibration procedure and finally section 8 explain the algorithms used to convert raw data in spectral radiance or reflectance.

2. CALIBRATION SETUP

The basic setup used during the calibrations consists of an optical bench over which are housed a collimator, a reference target placed at its focal plane and a folding mirror used to move the collimated beam in the instrumental FOV along the azimuthal (sample) and zenithal (line) directions.

As VIR focuses at infinite distance becomes necessary to use a collimator to have a collimated reference beam impinging the optical pupil. The SG-developed collimator uses an off-axis parabola (D=250 mm, F=1020 mm, off axis angle=8°) which guarantees unobstructed beam, reduced aberrations and high spatial scale. For VIR the magnification ratio is equal to:

MR=F_VIR/F_collimator=152mm/1020mm=0.15

which means that 1 mm on the collimator's focal plane corresponds to 0.15 mm on the VIR detector. As VIR focal plane detector has 40 µm pixel pitch (square), this scale corresponds to 4 spatial pixels along both sample and line directions. The collimator's focal plane is equipped with an holder able to sustain several interchangeable targets (pinholes, test slits, MTF masks, matrix of 5x5 microlamps); these elements are used for the different calibrations. The collimated beam is folded towards the instrument thanks to a folding mirror placed over two computer controlled, micrometric mounts able to aim it at steps of 1 µrad along the azimuthal (scan parallel to VIR slit, along sample direction) and zenithal (scan perpendicular to the slit, along lines direction) angles.

In order to reproduce the operative conditions aboard the satellite, VIR is housed into a thermo-vacuum chamber. In these conditions, thanks to the internal cryo-cooler (operating on a Stirling cycle), it's possible to cold down the IR focal plane up to the operative temperature of about 70 K and the CCD at about 230 K.

The collimated optical beam reaches the spectrometer's pupil thanks to a CaF2 window housed in the front of the thermovacuum chamber. This window is characterized by an elevated optical transmittance in the 250-5100 nm spectral range.

All opto-mechanical devices placed on the optical bench are controlled thanks to a dedicated software (OCS, Optical Control System), while VIR is controlled thanks to a separate setup, consisting in the UT (Unit Tester) connected to the experiment through the Proximity Electronics Module (PEM). This system allows to send commands to the instrument, to start acquisitions only when all optical elements commanded by OCS are in the correct configuration and to receive back and record telemetries and scientific data.

3. SPECTRAL CALIBRATION

The spectral calibration concerns with a fundamental aspect of the functional requirements of a hyperspectral imaging spectrometer: the conversion of bands positions along the spectral axis of the detectors in wavelength units.

The spectral calibration is obtained through the following steps:

- •characterization of the spectral performances of the monochromator to be used as a calibrated reference source; this preliminary check was performed on the emission features of a standard Hg pencil lamp;
- •use of the monochromator to scan in detail some spectral ranges and measure the corresponding instrumental spectral response;

•fit of these spectral responses with gaussian curves to retrieve the channel's parameters; •extension of these values to the remaining bands with a linear fit.

The following instrumental parameters are deduced from the spectral calibration:

•Spectral range: the interval of wavelengths at which the instrument is sensitive;

•Sample Central Wavelength: the VIS and IR Sample Central Wavelength, $\lambda_{VIS}(m, n)$ and $\lambda_{IR}(m, n)$, is the wavelength of the centroid of the Spectral Response Function for each frame pixel (m, n), where m is the frame sample (row) index and n is the frame band (column) index;

•Spectral Sampling Interval: the VIS and IR Spectral Sampling Interval, $SSI_{VIS}(m, n)$ and $SSI_{IR}(m, n)$, is the difference between the VIS and IR sample central wavelengths of two adjacent samples for each frame pixel (m, n), where m is the frame sample (row) index and n is the frame band (column) index;

•SpectralWidth: the VIS and IR Spectral Widths, $SW_{VIS}(m, n)$ and $SW_{IR}(m, n)$, are the Full-Width-at Half-Maximum of the Spectral Response Function for each frame pixel (m, n), where m is the frame sample (row) index and n the frame band (column) index.

As the instrument uses a diffraction grating which disperses the light according to a linear law we can assume SSI(n) = SSI; in this case the spectral calibration relation assumes the following expression:

 $\lambda_c(n) = \lambda_0 + SSI \cdot b$

These quantities were measured during on-ground tests by acquiring several fine spectral scans using a monochromator as a source. The calibration setups used to define the spectral properties of VIR derives from a similar setup developed for VIRTIS/M aboard Rosetta and Venus Express missions (Ammannito et al. 2006; Filacchione 2006).

Two different configurations were used to characterize the spectral response, the first using a transmission method and the second using a diffusion method.

In the first case (transmission) on the optical bench, the source, the monochromator, the test slit and the collimator were present; using this set-up the level of the signal was high enough to stimulate VIR, but the alignment between the output slit of the monochromator and the test slit of the optical bench was difficult to achieve. In the second case (diffusion) on the optical bench were the source, the monochromator, a silvered diffusive target and the collimator; in this case the alignment of the system wasn't critical, but the level of the signal was lower.

The monochromator scans different wavelengths, thus illuminating the diffusive screen. VIR acquires monochromatic images at each step. Therefore VIR is "simulated" at wavelength steps smaller than its spectral resolution. In this way it is possible to associate to each frame the wavelength of the input beam coming from the monochromator. Studying the profile over the lines of each illuminated band, it is possible to get the spectral response function of that particular band.

3.1 Trasmission method

The transmission method was applied only to the visual channel. For each illuminated pixel, the spectral response Function, fitting a Gaussian-like function over the profiles measured during the spectral scans, was computed. With this setup the the intensity of the signal along the slit isn't uniform. This could be related with a misalignment between the output slit of the monochromator, namely the test slit of the optical bench and the entrance slit of the experiment. Moreover a spectral shift along the slit is apparent, given that at every illuminated band a different central wavelength is found. The central wavelength and the spectral width of the illuminated bands are calculated by averaging such parameters over every illuminated sample. The central wavelength of the band is calculated by using a linear fit while the spectral width is given by a polynomial fit. A summary of the parameters calculated with the fits and their uncertainties are reported in the following table:

Model	Spectral dispersion a · x +b	Spectral width a· x4 +b · x3 +c · x2 +d · x +e
Parameters 2.13	a = 1.89297 b = 245.744	a = 5.25E–11 b=–6.08E–8 c = 2.74E–5 d =–0.0049 e =
Sigma	σa = 0.00016 σb = 0.041	σa = 0.14E–11 σb = 0.14E–7 σc = 4.82E–5 σd = 0.0068 σe = 0.31

In the next table are indicated, for all the illuminated bands, the measured and calculated values of the central wavelength and spectral width. The measured values are averages computed over all the illuminated samples for a fixed band.

Band #	λmeas	λcal	SWmeas	SWcal
	(nm)	(nm)	(nm)	(nm)
79	395.125	395.289	1.89559	1.88451
80	397.049	397.182	1.89332	1.88290
81	398.964	399.075	1.88235	1.88131
82	400.860	400.967	1.87189	1.87976
83	402.761	402.860	1.86246	1.87824
84	404.662	404.753	1.87010	1.87675
157	542.828	542.94	1.87158	1.82947
158	544.925	544.833	1.84376	1.82947
159	546.835	546.726	1.83146	1.82949
160	548.742	548.619	1.82906	1.82952
161	550.640	550.512	1.82154	1.82956
162	552.548	552.405	1.84028	1.82961
163	554.454	554.298	1.84128	1.82967
237	694.480	694.378	1.81275	1.85861
238	696.323	696.271	1.86955	1.85922
239	698.219	698.164	1.84252	1.85983
240	700.101	700.057	1.85477	1.86045
241	702.000	701.950	1.86519	1.86107
242	703.898	703.843	1.85821	1.86170
317	845.842	845.816	1.91248	1.91559
318	847.74	847.709	1.91959	1.91639
319	849.647	849.602	1.92232	1.91720
320	851.542	851.495	1.91718	1.91800
321	853.447	853.388	1.91865	1.91881
396	995.282	995.361	1.97795	1.99122
397	997.171	997.254	1.98837	1.99243
398	999.063	999.147	1.99155	1.99365
399	1000.95	1001.04	1.98800	1.99487
400	1002.85	1002.93	2.00388	1.99611
401	1004.75	1004.83	2.00954	1.99735

From these measurements' analyses we have noted the presence of a slight spectral shift occurring along the slit. In order to evaluate this effect we have repeated the calculation of the linear fit coefficients for other samples along the slit (at samples = 110, 140); the results at slit's center (sample = 128) were previously discussed. This analysis demonstrates the presence of a change in the spectral calibration response when repeated on different points along the slit. The fit parameters with their errors on samples 110, 128, 140 are reported in the next table.

Sample #	λmeas	SWmeas
	(nm)	(nm)
110	246.76 ±0.56	1.8926 ± 0.0022
128	245.83 ±0.30	1.8926 ± 0.0011
140	245.40 ±0.19	1.8921 ± 0.0007

The calculations demonstrate that the parameters are incompatible among them so the central wavelengths calculated with the coefficients indicated in the previous table cannot be used and another calibration approach is necessary. At the end of the post-processing analysis it is possible to conclude that the measurements of the spectral width are satisfactory while further measurements are needed to get the dispersion coefficients. Using the Transmission setup, in fact, they seem to be sample dependent. In the next paragraph the results obtained using the Diffusion setup data are discussed.

3.1 Diffusion method

The Diffusion method was used to characterize the spectral response of both Visual and Infrared channels. We use these measurements to determine the central wavelength of the Visual channel and both the central wavelength and the spectral width of the Infrared channel. Comparing these results with the similar profiles taken with the Transmission setup, it is apparent that the spectral shift among profiles taken at different

samples is negligible. In this way it is verified that the effect is caused by the Transmission set-up characteristics (difficult to co-align VIR and test slit orientations) and is not due to the VIR malfunctioning. By using the same technique discussed in advance, we have retrieved the best spectral dispersion and width values. For both channels, the central wavelength of each band b is retrieved through a linear fit while for the spectral width is used a polynomial fit.

VIS Parameters	Spectral dispersion Model a · x +b a = 1.89223 b = 245.660	Spectral width a· x4 + b · x3 +c · x2 +d · x +e a = 1.3E–10 b=−1.1E–7 c = 1.89E–5 d = 0.0047 e = 1.6
Falameters		
Sigma	σa = 0.00033 σb = 0.085	σa = 8.1E–10 σb = 7.8E–7 σc = 0.26–5 σd = 0.0037 σe = 1.7
IR	Model a · x +b	a· x4 + b · x3 +c · x2 +d · x +e
Parameters Sigma	a = 9.4593 b = 1011.29 σa = 0.0011 σb = 0.28	a =-6.8E-10 b = 8.23E-7 c=-2.09E-4 d = 0.0021 e = 13.9 σa = 2.3E-9 σb = 1.6E-6 σc = 3.80E-4 σd = 0.0335 σe = 1.2

We report in the next Table the measured and computed values of the central wavelength and spectral width for both channels. The measured values are averaged over all the samples for a given band.

VIS channel	`	\	C) M	014/
Band	λ _{meas}	λ_{cal}	SW _{meas}	SW _{cal}
#	(nm)	(nm)	(nm)	(nm)
81	398.875	398.931	2.07338	2.03109
82	400.774	400.823	2.02554	2.03699
83	402.597	402.715	1.99148	2.04287
84	404.436	404.607	2.07068	2.04875
158	544.700	544.633	2.42099	2.44303
159	546.577	546.525	2.44812	2.44754
160	548.465	548.417	2.45310	2.45203
161	550.355	550.309	2.45829	2.45648
162	552.249	552.201	2.47181	2.46091
163	554.144	554.094	2.47652	2.46531
164	556.028	555.986	2.46822	2.46969
238	696.007	696.011	2.69859	2.70952
239	697.892	697.903	2.69611	2.7116
240	699.785	699.795	2.69541	2.71365
241	701.677	701.688	2.70452	2.71567
242	703.572	703.58	2.72082	2.71767
243	705.508	705.472	2.80885	2.71963
317	845.453	845.497	2.75994	2.79344
318	847.337	847.389	2.80736	2.79368
319	849.239	849.282	2.8061	2.79391
320	851.142	851.174	2.79165	2.79412
321	853.043	853.066	2.80487	2.79433
396	994.789	994.983	2.75589	2.80388
397	996.686	996.875	2.8257	2.80439
398	998.595	998.768	2.77639	2.80492
399	1000.46	1000.66	2.79735	2.80548
400	1002.28	1002.55	2.78868	2.80606
401	1004.22	1004.44	2.84745	2.80666
IR channel				
Band	$\lambda_{ m meas}$	λ_{cal}	SW _{meas}	SW _{cal}
#	(nm)	(nm)	(nm)	(nm)
2	1029.3	1030.21	14.0742	13.9467
3	1038.77	1039.67	13.78	13.9478
103	1986.31	1985.6	12.9869	12.7654
103	1995.85	1995.06	12.7585	12.7477
105	2005.35	2004.52	12.6494	12.7299
106	2003.33	2013.98	12.5963	12.7123
208	2978.82	2978.83	11.4667	11.4689
200	2010.02	2010.00	11.4007	11.4009

209	2988.07	2988.29	11.2923	11.4666
210	2997.45	2997.75	11.6996	11.4645
211	3006.83	3007.21	11.5063	11.4626
211 212 315	3016.13 3991.6	3016.67 3990.98	11.337 12.7906	11.4620 11.461 12.9028
316 317	4000.3 4010.2	4000.44	12.6859	12.9335
367	4482.68	4482.86	14.9175	14.9333
368	4492.2	4492.32	15.1484	14.9807
369	4501.56	4501.78	14.8612	15.0283
370	4511.02	4511.24	15.1136	15.0763

At the end of the post-processing analysis it is possible to conclude that the measurements of the dispersion coefficients are good both for the visual and infrared focal planes, that measurements of the spectral width for the infrared focal planes are compliant with the specifications, and that the spectral width of the visual focal plane, the one computed with the transmission method, gives better results. The quality of the spectral calibration is checked observing the spectrum of a calibrated HgNe pencil lamp.

4. GEOMETRIC CALIBRATION

The geometrical calibration allows characterization of:

- (1) the field of view, hereafter FOV;
- (2) the instantaneous field of view (hereafter IFOV) of different pixels along and across the spectrometer's slit directions (respectively sample and line directions).

We define the pixel function, PF(s), as the convolution of a unitary step function V (s) (representing the real pixel) with the instrumental response along the sample direction, INST(s):

 $PF(s) = V(s) \otimes NST(s)$

The slit function, SF(I), is given by the convolution of a unitary step function U(I) (representing the spectrometer's slit response) with the telescope response along the line direction, TEL(I):

$SF(l) = U(l) \otimes TEL(l)$

These two responses were measured during the pre-launch calibration campaign acquiring the signal produced by a test-slit, illuminated by a HgNe lamp, having an equivalent width narrower than the instrumental IFOV (the test slit aperture is 3.0×0.1 mm, corresponding to 12×0.4 pixels at VIR scale). This test-slit is placed at the collimator's focus and it is moved at subpixel steps perpendicular and parallel to the VIR slit by moving the folding mirror. By using this method it is possible to measure the FWHM of the IFOV on three positions of the FOV (boresight: sample = 128, line = 128), position N: sample = 38, line = 218; position O: sample = 218, line = 38). For the VIS channel the FWHM of the pixel function is ranges over the 237.9–244.1 µrad interval while the slit function is 287.7–389.4 µrad; for the IR channel the ranges are 421.7–488.1 and 350.9–367.3 µrad respectively. These differences are caused by a residual of astigmatism in the optical design.

The determination of the FOV (nominally $3.6^{\circ} \times 3.6^{\circ}$) is possible through the imaging of a 5 x 5 array of microlamps placed at the focus of a collimator. This array was built to cover the entire FOV when placed at collimator's focus: the presence of a regular grid of subpixel sources allows for evaluation of the imaging and geometrical performances of the experiment. The absolute position of each microlamp was measured with a theodolite placed on the pupil of the collimated beam; when compared to the relative positions of the lamps spots on the images it is possible to infer the dimensions of the instrumental FOV.

Moreover, this setup is particular useful in evaluating the presence of possible "spectral shift", e.g. a mismatch between the position of one monochromatic image with respect to another. This effect is particularly evident on VIRTIS-M on Rosetta, where it reaches a shift of about 8 spatial pixel (samples) between the first and the last image of the VIS channel. The cause of it is a slight misalignment among slit, grating grooves and focal plane orientation (for a full discussion of the spectral tilt and post-processing corrective methods the reader can refer to Filacchione 2006). For VIR several optical improvements were introduced on the grating design that allow drastically reducing this effect. The analysis of the 25 microlamps' target allows verification that the spectral shift on the VIS channel reaches about 2 spatial pixels between the two spectral extremes of the range. This value comes from the analysis of the distribution of the microlamps

position (in sample-line space) on the monochromatic images. As each microlamp has a subpixel dimension when seen by VIR through the optical bench setup, it is possible to measure the associate baricenter position through a 2D Gaussian fit; this procedure is done for each lamp and for every spectral band (432 images).

5. SPATIAL CALIBRATION: FLAT-FIELD

Flat-field is defined as the response of the instrument to a uniform source (Filacchione et al. 2006). It is used to homogenize the pixels' response across the whole focal plane. In the case of imaging spectrometers using 2D detectors, flat field matrices contain, for each wavelength, the relative variation of the instrumental response with respect to the boresight (sample $s^* = 127$).

The measurements of the VIS and IR flat-field matrices were calculated during the prelaunch tests by acquiring a spatially flat source placed on the focus of a collimator and aligned to the VIR boresight. The source used in the $0.25-2.5 \mu m$ range is a lambertian surface illuminated by a QTH lamp; this target is about 10 x 10 cm wide in order to completely fill the instrumental FOV. It is replaced by a blackbody source for the measurement of the flat-field in the 2.5–5.0 μm range. In both cases the flat field is retrieved through a spatial scan across these targets by moving the folding mirror at 1 IFOV step. This approach allows for observation of the same region of the target with each pixel (sample) of the detector, thus eliminating possible target disuniformities from the flat-field matrices.

The resulting flat-field matrices for the two focal planes are given by the ratio of the signal measured at a certain position of the focal plane (b, s) with respect to the signal measured ad boresight ($s = s^*$) and at the same band position b:

 $FF(b,s) = N_s(b,s) / N_s(b, s^*)$

Flat-field matrices are sensitive to the characteristics of the detector (single and clusters of defective pixels, dis-uniformities due to the production process) and of the optical layout (the two horizontal features at samples 80 and 150 are caused by the slit's shape; several vertical features with a symmetry with respect to boresight are introduced by the grating design).

6. RADIOMETRIC CALIBRATION

As explained in the Flat-Field paragraph, the wide spectral range of the experiment can be explored only by using different sources (Filacchione et al., 2006).

For the radiometric calibration two different sources are necessary:

- 0.25–1.0 μm: QTH source, with photometric stabilization system, illuminating a diffusive target in Spectralon[™] placed at collimator's focus;
- 1.0–5.0 μ m: Blackbody at variable temperature (from 50° to 350°C) with temperature control. The BB emitting area is placed at collimator's focus.

The input radiance is measured and verified through a laboratory radiometer, (Field-SpecTM spectroradiometer). Unfortunately as the optical pupil of the Field-Spec optics does not match entirely with the VIR pupil, the measured radiance can only be used as a relative value: the "shape" of the radiance, Rad, emitted by the target doesn't change but the knowledge on the geometric factor (constant and uniform for each spectral channel) is not known. For this reason the overall calibration shall be tested in flight and complemented with specific observations of known targets, such as stars and planets. The lamps used are observed first with the spectroradiometer, and then with VIR. Knowing the value of input radiance, we can associate it with an average of 50 VIR acquisitions of the SpectralonTM target, taken at slit center, with an integration time $t_i = 10$ s. The Responsivity, R, is therefore calculated by applying the following equation:

R(b, s*)=DN(b, s*) / BB(b) t_i

the expansion to each pixel of the focal plane is possible by applying the flat-field FF. In this way we retrieve the ITF (Instrument Transfer Function) array:

 $ITF(b, s) = FF(b, s) \cdot R(b, s^*)$

The IR channel radiometric calibration is done by acquiring directly the radiance emitted by a blackbody source placed at the collimator's focus. The blackbody temperature is set at different values in order to have a good SNR on several spectral ranges and with different integration times (a summary of the acquisitions is given below). As reported in the next Table, only a limited spectral range can be used for the evaluation of the IR responsivity: for bands < Min Band the signal is very low and it includes only the readout offset and residuals of the dark current; for bands > Max Band value the signal is saturated. After this selection we reduce the signals in the restricted spectral range Min Band < band < Max Band; therefore the responsivity is retrieved by using only the signal intervals as indicated in following:

TBB (°C)	<i>ti</i> (s)	Min Band	Max Band
50	0.2	250	438
	1.0	238	280
	2.0	238	255
	5.0	170	240
100	0.2	238	281
	1.0	148	239
	2.0	140	195
	5.0	120	170
200	0.2	110	174
	1.0	80	120
	2.0	70	105
	5.0	65	95
300	0.2	60	100
	1.0	40	68
	2.0	35	58
	5.0	0	37
350	0.2	0	78
	1.0	0	52
	2.0	0	35

The IR responsivity is computed by using

R(b, s*)=DN(b, s*) / BB(b) t_i

where the blackbody radiance BB is given by Planck's formula. Finally, applying

 $ITF(b, s) = FF(b, s) \cdot R(b, s^*)$

to these data, it is possible to derive the responsivity for each pixel of the IR channel.

7. INTERNAL CALIBRATION

Instrumental performances can be checked during in-flight conditions thanks to the internal calibration sequence. VIR, in fact, can acquire reference signals thanks to the combined use of cover, shutter and VIS and IR lamps (Melchiorri et al., 2003). These lamps, housed on the side of the telescope illuminate the internal side of the external cover. The cover is placed near the entrance pupil of the instrument to minimize optical aberrations. The window of each lamp contains a transparent filter (holmium for the VIS, polystyrene for the IR) to introduce some well-shaped spectral absorption features on the overall spectrum. The signal coming from the two lamps can be used to:

- check the in-flight stability of the instrumental spectral response;

- check the in-flight stability of the flat-field;

- monitor the evolution of defective pixels (number and distribution);

- perform a check on the relative radiometric response of the instrument.

The internal calibration mode, implemented in the VIR on-board software, consist in the acquisition of a sequence of 35 frames: 5 electronic offsets, 5 backgrounds, 5 dark currents, 5 acquisitions of the IR lamp, 5 acquisitions of the VIS lamp, 5 dark currents and 5 backgrounds. The repetition of this sequence at each switch-on is fundamental to follow the instrumental temporal evolution and to monitor the overall performances in operative conditions.

8. HOW TO CALIBRATE VIR IN-FLIGHT DATA

From the Dawn Science Center (UCLA-JPL) the VIR team receives data and telemetry packets from the satellite. These packets are processed in the PI institution (INAF-IFSI, Rome, Italy) with a proprietary GSE (Ground Support Equipment) and converted in standard PDS (Planetary Data System) format. Thanks to a dedicated package scripts and routines and by using calibration files distributed with this archive, it is possible to convert raw data in physical units

A raw data cube contains uncalibrated signal N_s in DN; dark currents and thermal background are periodically stored in the same raw data cube. The counts stored in the PDS cube can be converted in physical units of spectral radiance Rad (W m⁻² μ m⁻¹ sterad⁻¹) by using the following equation:

 $S(\lambda(b), x, y) = N_s(b, s, l) / ITF(\lambda(b), s) t_i$

where:

-S(λ (b),s,l) is the cube calibrated in spectral radiance which have the same dimensions (λ (b),s,l) of the raw cube;

 $-\lambda$ (b) is the wavelength associated to band b according to spectral calibration tables (file DAWN VIR HIGHRES SPECAL 10.tab) of VIS and IR channels;

-s, I corresponds to sample and line location of the pixel in the original cube;

-t_i is the integration time of the observations (in seconds) as indicated in the PDS header of the file for VIS and IR channels;

-ITF(λ (b), s) is the Instrument Transfer Function matrix for VIS and IR channels (files DAWN_VIR_VIS_RESP_10.dat and DAWN_VIR_VIS_RESP_10.dat, respectively).

This calculus can be applied to high resolution acquisitions (432 bands times 256 samples); in nominal modes, where spatial and/or spectral resolutions are reduced, it is necessary to interpolate both spectral tables and responsivity matrices according to binning values.

In the CALIB directory the following calibration files are stored:

- DAWN_VIR_VIS_RESP_Vx.TXT, a 432x256 floating precision matrix containing the VIR-VIS Instrumental Transfer Function, including the VIS flat-Field.

- DAWN_VIR_IR_RESP_Vx.TXT, 432x256 floating precision matrix containing the VIR-IR Instrumental Transfer Function, including the IR flat-Field.

- DAWN_VIR_VIS_HIGHRES_SPECAL_Vx.TXT and

- DAWN_VIR_IR_HIGHRES_SPECAL_Vx.TXT, 432 row ASCII tables containing the wavelengths of the VIS and IR channels in High Resolution Mode.

- DAWN_VIR_VIS_WIDTH432_Vx.TXT and

- DAWN_VIR_IR_WIDTH432_Vx.TXT, 432 row ASCII tables containing the width of the VIS and IR channels in High Resolution Mode.

These files must be used for cubes collected in High Resolution Mode.

Cubes in Nominal Mode (x3 binning along bands) can be calibrated by using the following spectral calibration files:

- DAWN_VIR_VIS_NOMRES_SPECAL_Vx.TXT and

- DAWN_VIR_IR_NOMRES_SPECAL_Vx.TXT, 144 row ASCII tables containing the wavelengths of the VIS and IR channels in Low Resolution Mode.

- DAWN_VIR_VIS_WIDTH144_Vx.TXT and

- DAWN_VIR_IR_WIDTH144_Vx.TXT, 144 row ASCII tables containing the width of the VIS and IR channels in Low Resolution Mode.

"x" is a digit representing the version number of the file. The first release is "V1".

VIR data included in this release can be calibrated by using this basic pipeline. Further improvements, based on the use of the internal calibration sequences, will be included in the next future.

9. REFERENCES

-E. Ammannito, PhD dissertation, Università degli studi di Padova, Centro Interdipartimentale di Studi e Attività Spaziali (CISAS), 2008. Available on line at http://paduaresearch.cab.unipd.it/760/1/tesi_online.pdf (in Italian)

-E. Ammannito, G. Filacchione, A. Coradini, F. Capaccioni, G. Piccioni, M.C. De Sanctis, M. Dami, A. Barbis, Rev. Sci. Instrum. 77, 093109 (2006)

-M.C. De Sanctis · A. Coradini · E. Ammannito · G. Filacchione · M.T. Capria · S. Fonte · G. Magni · A. Barbis · A. Bini · M. Dami · I. Ficai-Veltroni · G. Preti · VIR Team, 2010. The VIR Spectrometer. Space Sci Rev DOI 10.1007/s11214-010-9668-5

-Melchiorri, R., Piccioni, G., Mazzoni, A., 2003. Review of Scientific Instruments, vol. 74, number 8, 3796-3801.

-G. Filacchione, PhD dissertation, Università degli studi di Napoli Federico II, 2006. Available at ftp.iasf-roma.inaf.it/gianrico/phd/Filacchione_PHD_2006.pdf (in Italian)

-G. Filacchione, E. Ammannito, A. Coradini, F. Capaccioni, G. Piccioni, M.C. De Sanctis, M. Dami, A. Barbis, Rev. Sci. Instrum. 77, 103–106 (2006)